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Introduction

Introduction

Descriptive statistics are justified in RDASA3 as stemming from three
basic needs:

1 To find aspects of the data worthy of inferential analysis. What
“catches the eye”? What is important?

2 As a goal in itself. Descriptive analysis can yield important findings.
For example, when a principal analyzes test results within a school,
descriptive analysis can assess things like (a) How the average student
is performing, (b) Whether a non-trivial number of students is
performing well below standard. As a hypothesis generation device.
While sifting through data, you may discover important questions
about your experimental phenomena that you would not have
considered without the exploratory analysis.
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Plots of Data Distributions

Plots of Data Distributions

Graphical analysis allows us to get a quick look at “what’s going on in the
data.”

MWL give a very brief description of 4 basic techniques:

1 The histogram.

2 The boxplot.

3 The stem-and-leaf display.

4 The Q-Q plot.

MWL illustrate the techniques with the Royer data set.

R scripts are provided by MWL for many of the textbook calculations. I’ve
adapted them slightly for our lecture style.
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Plots of Data Distributions

Plots of Data Distributions

Throughout the course, we shall, on occasion, use packages recommended
by MWL in the support materials for RDASA3. A current installation file
Function Install.r for those packages is in the R Support Materials
directory on the course website.

Periodically, the lab machines may be reset by Vanderbilt ITS, in which
case you may need to reinstall any package that will not load. You can do
this with the library() command.
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Plots of Data Distributions The Histogram

Plots of Data Distributions
The Histogram

The histogram is a familiar member of the standard group of frequency
distribution displays.

We shall demonstrate the histogram with the RoyerY data set described
on page 21 of RDASA3.

The data are percent correct addition scores for 28 male second-grade
students.
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Plots of Data Distributions The Histogram

Plots of Data Distributions
The Histogram

The histogram is a familiar member of the standard group of frequency
distribution displays.

We shall demonstrate the histogram with the RoyerY data set described
on page 21 of RDASA3.

The data are percent correct addition scores for 28 male second-grade
students.

> RoyerY <- read.csv("Royer_Y.csv", header = T)

> attach(RoyerY)
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Plots of Data Distributions The Histogram

Plots of Data Distributions
The Histogram

A direct call to R’s hist function produces a plot that is a bit lacking in
detail.

> hist(Royer)

Histogram of Royer
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Plots of Data Distributions The Histogram

Plots of Data Distributions
The Histogram

We can do better by increasing the number of breaks and adding a correct
axis label.

> hist(Royer, breaks = 20, main = "Royer Addition Scores",

+ xlab = "Addition Scores", ylab = "Frequency", col = "green")

Royer Addition Scores
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Plots of Data Distributions The Histogram

Plots of Data Distributions
The Histogram

Royer Addition Scores
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Now we can clearly see a number of key aspects of the data:

1 Most of the students did very well. Indeed, many scored 100%.

2 The distribution is skewed, typical of test scores where the test “lacks
headroom.”

3 There is a gap in the distribution, with 3 students doing very poorly.

A number of authors (e.g., Micceri (1989)) have commented that such
characteristics are quite common in empirical data sets.
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Plots of Data Distributions The Boxplot

Plots of Data Distributions
The Boxplot

The boxplot provides a more compact view of summary aspects of a data
set.

It offers less detail than the histogram, but can be especially useful for
comparing several data sets at once.

Here is a boxplot of the Royer data.

> boxplot(Royer, main = "Addition Scores", ylab = "Percent Correct")
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Plots of Data Distributions The Boxplot

Plots of Data Distributions
The Boxplot

The fundamental ideas behind the boxplot are that

1 The box displays the 25th, 50th, and 75th percentiles.

2 The whiskers extend to the highest and lowest scores that are not
outliers.

3 Outliers are represented with circles and (in the case of extreme
outliers) stars.

4 The H-Spread is essentially equal to the interquartile range, i.e.,
P75 − P25, or, the height of the box.

5 An outlier is any observation falling more than 1.5 H-Spreads from
either the top or bottom of the box.

6 Some boxplots define an extreme outlier as an observation that is
more than 3.0 H-Spreads from either the top or bottom of the box.

There are numerous possible minor variations of the boxplot, depending on
how one defines the sample quantiles that are used to construct the box
and compute the H-Spread.

Should one use the sample quantiles? What about gaps? What about
unbiased estimation of the quantiles? Under what assumptions?

It would take several lectures to cover all the possibilities in detail. We’ll
just go with the R default.
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Plots of Data Distributions The Boxplot

Plots of Data Distributions
The Boxplot

Boxplots may be enhanced in numerous ways, by adding information and
using color creatively.

One option, useful if the sample size is not too large, is to add the actual
data points to the plot.

The only problem here is that there is overlap of the points. In the next
slide, I show one way around that.

See if you can figure out what I am doing!

> boxplot(Royer, main = "Addition Scores:\n 28 Second-Graders",

+ boxfill = "grey", border = "darkgrey", notch = T)

> points(x = rep(1, 28), y = Royer, pch = 16, col = "red")
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Plots of Data Distributions The Boxplot

Plots of Data Distributions
The Boxplot

> boxplot(Royer, main = "Addition Scores:\n 28 Second-Graders",

+ boxfill = "grey", border = "darkgrey")

> points(x = c(1, 1, 1.01, 1, 1, 1, 1, 1, 1.01, 1, 1, 1, 1,

+ 1, 1.01, 1, 1, 1, 1.01, 1.02, 1.03, 1, 1.01, 1, 1.01,

+ 1.02, 1.03, 1.04), y = sort(Royer), pch = 16, col = "red")
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Plots of Data Distributions The Boxplot

Plots of Data Distributions
The Boxplot

A idea is elaborated in the beeswarm chart.

Here, we stack the Y and Royer data in one column y , use a grouping
variable x , and construct a beeswarm chart using the beeswarm package.
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Plots of Data Distributions The Boxplot

Plots of Data Distributions
The Boxplot

> library(beeswarm)

> y <- rbind(Royer, Y)

> x <- rbind(rep(1, 28), rep(2, 28))

> beeswarm(y ~ x)
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Plots of Data Distributions The Boxplot

Plots of Data Distributions
The Boxplot

Here is a more ambitious example:

> data(breast)

> breast2 <- breast[order(breast$event_survival, breast$ER),

+ ]

> beeswarm(time_survival ~ event_survival, data = breast2,

+ pch = 16, pwcol = as.numeric(ER), xlab = "", ylab = "Follow-up time (months)",

+ labels = c("Censored", "Metastasis"))

> legend("topright", legend = levels(breast$ER), title = "ER",

+ pch = 16, col = 1:2)
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Plots of Data Distributions The Stem-and-Leaf Display

Plots of Data Distributions
The Stem-and-Leaf Display

As mentioned in Psychology 310, the stem-leaf display was very popular in
the late 1970’s.

This method has the advantage of displaying more numerical information
than a histogram, while still displaying the shape of the distribution.

> stem(Royer)

The decimal point is 1 digit(s) to the right of the |

4 | 7

5 | 00

6 | 9

7 | 246

8 | 22345899

9 | 03444455

10 | 00000
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Plots of Data Distributions The Q-Q plot

Plots of Data Distributions
The Q-Q plot

The Q-Q Plot is a method for evaluating how closely the shape of a
distribution adheres to a particular functional form.

The quantiles of the observed data are plotted against the corresponding
quantiles of a theoretical distribution.

If the shapes of the distributions are the same, then the Q-Q plot should
be a straight line.

In the QQ plot on the following slide, the reaction time data for males in
grades 5–8 are compared to a normal distribution.

Clearly, the reaction time data are non-normal. Are they positively or
negatively skewed? Can you tell from the plot?
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Plots of Data Distributions The Q-Q plot

Plots of Data Distributions
The Q-Q plot

> mult_time <- read.csv("Royer rt_speed data.csv", header = T)

> attach(mult_time)

> m58 <- subset(mult_time, gender == "Male" & grade > 4)

> qqnorm(m58$M_RT, main = "Royer Multiplication Response Times")

> qqline(m58$M_RT)
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Plots of Data Distributions The Q-Q plot

Plots of Data Distributions
The Q-Q plot

On the other hand, the reaction speed data appear to be very close to
normally distributed.

> qqnorm(m58$M_Speed, main = "Royer Multiplication Speeds")

> qqline(m58$M_Speed)
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Measures of Location and Spread The Arithmetic Mean

Measures of Location and Spread
The Arithmetic Mean

The sample mean of a set of numbers Xi is defined as
X • = (1/n)

∑n
i=1 Xi . It has a number of important properties that

concern its behavior under linear transformations and linear combinations
of the data. These properties were dealt with extensively in Psychology
310. If you have not taken Psychology 310, you should immediately review
the lecture notes and handouts on linear transformation and linear
combination theory.
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Measures of Location and Spread The Arithmetic Mean

Measures of Location and Spread
The Arithmetic Mean

Given a set of n scores Xi , a listwise linear transform is any transformation
of all the numbers that can be written in the form Yi = aXi + b , where a
and b are constants. Then

1 If Yi = aXi + b, then the mean of the transformed scores follows the
relationship

Y • = aX • + b (1)

2 This implies that listwise addition, subtraction, multiplication and/or
division come straight through in the mean.
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Measures of Location and Spread Trimmed Mean

Measures of Location and Spread
Trimmed Mean

One way of making the mean more resistant to outliers is simply to trim a
percentage of the outlying cases from the sample.

A simple version of this idea is the trimmed mean.

The scores are ordered, and a percentage of cases is trimmed from the
upper and lower end of the distribution.

The trimmed mean is calculated on the remaining scores.
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Measures of Location and Spread The Sample Variance and Standard Deviation

Measures of Location and Spread
The Sample Variance and Standard Deviation

The sample variance of a set of numbers Xi is defined as
s2 = (1/(n − 1))

∑
(Xi − X •)2.

The sample standard deviation is the square root of the sample variance,
i.e., s =

√
s2.

The properties of the sample variance and standard deviation were
discussed in detail in Psychology 310.
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Measures of Location and Spread The Sample Variance and Standard Deviation

Measures of Location and Spread
The Sample Variance and Standard Deviation

If Yi = aXi + b, then the standard of the transformed scores follows the
relationship

sY = |a|sX (2)

This implies that listwise addition and subtraction have no effect on the
standard deviation, while multiplication and/or division by a positive
constant come straight through in the standard deviation.

Likewise
s2Y = a2s2X (3)
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z-Scores and Their Properties

z-Scores and Their Properties

We transform a set of scores into z-score form by the formula

zi =
Xi − X •

sX
(4)

In Psychology 310, we prove, using the laws of linear transformation, that
a set of z-scores must have a mean of 0, a standard deviation of 1, and
the same shape as the original numbers.

RDASA3 provides an algebraic proof on page 36.
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Summary Shape Statistics

Summary Shape Statistics

Summary measures of shape of a distribution are of interest, often in the
context of assessing adherence of the data to the assumption of normality.

If the data have high kurtosis due to long tails, then the sample mean may
be an unreliable estimator of the population mean.

Moreover, standard formulas for the variance of the sample correlation and
sample variance can be seriously in error if the data come from a
population with high kurtosis.
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Summary Shape Statistics Skewness

Summary Shape Statistics
Skewness

Skewness statistics are designed to assess departures from symmetry.

The standard definition of skewness in a population is the average cubed
z-score
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Summary Shape Statistics Kurtosis

Summary Shape Statistics
Kurtosis

The basic idea of kurtosis is that it is the average 4th power of the
z-scores.

However, the kurtosis of a distribution is typically expressed relative to
that of a normal distribution.

The normal distribution has a kurtosis of 3. So, the most common
measure of kurtosis is the average 4th power of the z-scores minus 3.

This can be computed in a number of ways. The simplest version is biased
for a normal distribution, but is reported by some programs.

SPSS reports a more complex estimate that is unbiased if the population
is normal.
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Summary Shape Statistics Kurtosis

Summary Shape Statistics
Kurtosis

Here is code for the simple statistic.
> # Standard deviation with n in the denominator

> S <- function(x) {
+ n <- length(x)

+ return(sqrt((n - 1)/n * var(x)))

+ }
> # z.scores using revised S

> z.score <- function(x) {
+ (x - mean(x))/S(x)

+ }
> # Power sum

> power.sum <- function(x, power) {
+ sum(z.score(x)^power)

+ }
> # Kurtosis relative to normal

> simple.kurtosis <- function(x) {
+ power.sum(x, 4)/length(x) - 3

+ }
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Summary Shape Statistics Kurtosis

Summary Shape Statistics
Kurtosis

> ## Compare to kurtosis reported by routine from the

> ## 'moments' library

> library(moments)

> kurtosis(Royer)

[1] 3.727

> ## another way to do it

> s4 <- sum((Royer - mean(Royer))^4)

> s2 <- sum((Royer - mean(Royer))^2)

> n <- length(Royer)

> n * s4/s2^2

[1] 3.727
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Summary Shape Statistics Kurtosis

Summary Shape Statistics
Kurtosis

Here is code for the SPSS statistic

> SPSS.kurtosis <- function(x) {
+ s4 <- sum((x - mean(x))^4)

+ s2 <- sum((x - mean(x))^2)

+ n <- length(x)

+ return(n * (n + 1) * s4/((n - 1) * (n - 2) * (n - 3))/var(x)^2 -

+ 3 * ((n - 1)^2)/((n - 2) * (n - 3)))

+ }
> SPSS.kurtosis(Royer)

[1] 1.124
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Comparing Two Data Sets Side-by-Side Boxplots

Comparing Two Data Sets
Side-by-Side Boxplots

The RoyerY data set includes a second variable, Y , designed to have many
summary statistics in common with the Royer variable.

However, it has substantially larger skew and kurtosis, as shown in Table
2.5 of RDASA3.

> summary(RoyerY)

Royer Y

Min. : 47.0 Min. :31.0

1st Qu.: 80.5 1st Qu.:85.0

Median : 89.0 Median :89.0

Mean : 84.6 Mean :84.6

3rd Qu.: 94.2 3rd Qu.:91.0

Max. :100.0 Max. :95.0
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Comparing Two Data Sets Side-by-Side Boxplots

Comparing Two Data Sets
Side-by-Side Boxplots

> mean(Royer)

[1] 84.61

> mean(Y)

[1] 84.61

> sd(Royer)

[1] 15.3

> sd(Y)

[1] 15.43
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Comparing Two Data Sets Side-by-Side Boxplots

Comparing Two Data Sets
Side-by-Side Boxplots

> skewness(Royer)

[1] -1.254

> skewness(Y)

[1] -3.021

> SPSS.kurtosis(Royer)

[1] 1.124

> SPSS.kurtosis(Y)

[1] 9.664
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Comparing Two Data Sets Side-by-Side Boxplots

Comparing Two Data Sets
Side-by-Side Boxplots
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Comparing Two Data Sets Side-by-Side Boxplots

Comparing Two Data Sets
Side-by-Side Boxplots

The side-by-side boxplot makes the situation pretty obvious.

> boxplot(RoyerY)

Royer Y
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Comparing Two Data Sets Displaying Means with Error Bars

Comparing Two Data Sets
Displaying Means with Error Bars

When we measure a parameter with a statistic, there is almost inevitably a
sampling error.

The standard error of a statistic is the standard deviation of the sampling
distribution of that statistic over repeated samples.

With n independent observations, the standard error of the sample mean
X • is σ/

√
n, where σ is the standard deviation in the population of scores.

MWL define SEM as s/
√

n. This is, of course, an estimate of the standard
error of the mean, not the actual standard error. (There is a long history
of applied statisticians blurring this distinction.)

If we knew σ, and had normally distributed populations, we could
construct a 95% confidence interval for the sample mean with error bars
roughly 2 standard errors in length. A 68% confidence interval would have
error bars roughly one standard error in length.

We can, in more typical circumstances, still construct approximate
confidence intervals based on estimated standard errors and the
t-distribution.
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Comparing Two Data Sets Bar Graphs for Qualitative Independent Variables

Comparing Two Data Sets
Bar Graphs for Qualitative Independent Variables

Bar graphs can be used to
compactly present data on means of several groups on two or more variables.
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Comparing Two Data Sets Line Plots for Quantitative Independent Variables

Comparing Two Data Sets
Line Plots for Quantitative Independent Variables

Line plots can be used to display means with error bars.
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